
 DocuFlow
 Version 80000

 Installation
 And

 User’s Guide

 © 2022-2022 Mpowered Ventures Ltd.
 301 – 1555 Fir St

 White Rock, BC V4B 4B6
 Canada

 http://www.mpowered.biz

 1

 1. Installing DocuFlow

 System Requirements

 Web App (External - if in DMZ scenario - explained later in doc):
 ● .NET: Requires an IIS server, running .NET Framework v4.7.2

 (note that v4.5 will work, but will not be as secure as v4.7.2 -
 mainly because 4.7.2 uses TLS 1.2 by default)

 Web Services (Internal):
 ● .NET: Requires an IIS server, running .NET Framework v4.7.2

 (note that v4.5 will work, but will not be as secure as v4.7.2 -
 mainly because 4.7.2 uses TLS 1.2 by default)

 Tempest Licences:
 ● Prospero
 ● Land

 Because these next 2 items may take some time, these are shown
 here right away so the appropriate technical specialist can get them
 set up, hopefully by the time everything else in this document is ready
 to go.

 Technical specialist: SQL Server: enable Ole Automation

 The TEST and LIVE databases will need to have Ole Automation
 enabled, if not already enabled. See the URL:
 https://docs.microsoft.com/en-us/sql/database-engine/configure-win
 dows/ole-automation-procedures-server-configuration-option?view=s
 ql-server-ver15

 This is required because the process initiates a web service call to the
 DocuFlow web services from a T-SQL function triggered by a Prospero
 task status function.

 Technical specialist: allowList DocuSign IPs

 DocuSign Connect messages are sent from a variety of IP addresses,
 and your IT department will need to allowlist those IPs. See the URL:
 https://www.docusign.com/trust/security/esignature

 This is required because DocuSign sends “Connect” messages back to
 the DocuFlow web service as each document signing process goes
 through its various stages.

 2

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/ole-automation-procedures-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/ole-automation-procedures-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/ole-automation-procedures-server-configuration-option?view=sql-server-ver15
https://www.docusign.com/trust/security/esignature

 Download the Install package

 Go to www.mpowered.biz and click on Downloads. Here you will find
 links to various setup ZIPs that match recent versions of Tempest.
 Click on the Download link for the most recent version. This will
 download the ZIP package, which you can then extract into a working
 directory on your web servers (external and internal will need to be
 installed at the same version).

 Contents of the ZIP package

 Once the ZIP package is extracted to a working directory, you will find
 this structure:

 \Docs
 \Dotnet
 \Integrations\DocuSign

 Create database user MpoweredWeb

 Create a user named MpoweredWeb in each Tempest database
 (usually LIVE and TEST) that you wish to access with DocuFlow. (You
 may already have created MpoweredWeb during the install of other
 Mpowered products.)

 Grant database user MpoweredWeb database access permissions

 Grant the table permissions found in \Docs\dbgrants.txt to the
 database user MpoweredWeb using your database management
 console. The table permissions need to run in each database (for
 example, Test and Live) that you will run DocuFlow against. It’s
 important to run the grants provided in the dbgrants.txt for each new
 version of DocuFlow, as they can change – as well as after every
 Tempest patch/update.

 3

http://www.mpowered.biz/

 Install the .NET web app

 The \Dotnet directory contains the .NET web services required for
 DocuFlow. Your installation will be one of the following two scenarios:

 DMZ scenario
 If your machine infrastructure involves a DMZ, separate from your
 internal protected zone, you will need a server to host the web
 services on the DMZ as well as a server to host the web services in the
 internal protected zone. In this scenario, let’s call it the DMZ scenario,
 the DMZ server will forward requests from the Internet (e.g. DocuSign
 Connect messages) to the internal web server. The external web
 server and internal web server must be running Mpowered DocuFlow
 web services at the same version.

 WAF scenario
 If your machine infrastructure involves a “web application firewall”,
 you will most likely need to install the web services on your internal
 protected zone only. You will only need to host the web services on a
 single server in the internal protected zone. In this scenario, let’s call
 it the WAF scenario, Internet requests (e.g. DocuSign Connect
 messages) will be routed directly to the internal web server.

 Internal Web Server (needed for both DMZ and WAF scenarios)
 On your internal web server, create a home directory for the
 Mpowered .NET web services if you don’t already have one…
 something like:

 C:\inetpub\wwwroot\Mpowered\DocuFlow-80000

 or:

 C:\inetpub\wwwroot\Mpowered\DocuFlow-80000TEST

 for a Test version. Copy the entire \Dotnet\WebServices\Redmond
 directory from the download here. Now on your internal web server,
 you should have this structure:

 …\wwwroot\Mpowered\DocuFlow-80000\
 bin\

 DP80000WS.dll
 DocuFlow.asmx
 Web.config.internal.txt

 Now edit the Web.config.internal.txt file and look for a section with
 the tag <connectionStrings> near the bottom. Here you will see a
 sample connection string for SQL Server named “MpoweredSQL”.

 4

 With the connection string you will use, edit it so that YOURHOST
 becomes the server name where the Tempest database lives, and
 INSTANCE becomes the name of the database instance. Also, change
 the Password= to the MpoweredWeb password you created earlier.
 (NOTE: the password is entered in clear text here – this file should be
 secured so that only people with proper permissions can view this
 file. Contact Mpowered for more info about encrypting the config file
 if you wish additional security.) If you don’t know the server name or
 password values, you may have to talk with your Database
 Administrator.

 Note: you can have multiple connection strings in this file, for
 example you could have an MpoweredSQLProd and an
 MpoweredSQLTest connection string each pointing to the Production
 and Test Tempest databases, although the preferred method is to
 have Live and Test web services versions in separate directories. In the
 DMZ scenario, when you set up the external web server below, you
 will choose which DSN (connection string) to use.

 Save and exit. Rename the Web.config.internal.txt file to Web.config
 (make sure you are viewing file extensions, because it won’t work if
 the file still has a .txt extension!)

 Now fire up IIS Manager on the internal web server. Browse into
 Application Pools, and right-click and choose Add Application Pool.
 Create a new pool named “MpoweredApps” using .NET CLR Version
 v4.0.30319 (if you do not have this version, you will need to install MS
 .NET Framework 4.7.2 on this machine), Integrated, Start application
 pool immediately ON. Click on the newly created pool, and browse to
 Advanced Settings on the right side menu. Make sure that Enable
 32-Bit Applications is set to True, and click OK.

 Now on the left tree, browse down to Sites > Default Web Site >
 Mpowered and right-click on DocuFlow-80000. Choose Convert to
 Application. Keep the Alias as DocuFlow-80000, but select Application
 pool MpoweredApps, and click OK. This should change the icon in the

 tree to: .

 Now click on DocuFlow-80000 and click the Content View button on
 the bottom of the IIS window, and then right-click on DocuFlow.asmx,
 and choose Manage Application > Browse. The default browser
 should appear with the DocuFlow .NET services listing **, containing
 links for AA_ServiceInfo, AC_DatabaseTest, etc. Click on
 AC_DatabaseTest, and just hit Invoke. You should get an XML page
 that says “SUCCESS: Found nnnn rows in the cd_tasks table”. This
 means that the DSN was set up correctly, and we are getting a
 connection to the Tempest database.

 5

 If you get the message “Timeout expired. The timeout period elapsed
 prior to completion of the operation or the server is not responding.”
 you may be able to solve the issue by running “exec sp_updatestats”
 on the database.

 That completes the set-up of the internal web server.

 External Web Server (needed for the DMZ scenario only)
 On your external (on the DMZ) web server, create a home directory
 for the Mpowered .NET web app… something like:

 C:\inetpub\wwwroot\Mpowered\DocuFlow-80000

 or:

 C:\inetpub\wwwroot\Mpowered\DocuFlow-80000TEST

 for a Test version. Copy the entire \Dotnet\Client directory from the
 download here. Now on your external web server, you should have
 this structure:

 …\wwwroot\Mpowered\DocuFlow-80000\
 bin\

 DP80000.dll
 favicon.ico
 GetBlade.aspx
 …etc
 Web.config.external.txt

 Now edit the Web.config.external.txt file and look for a section with
 the tag <appSettings> near the bottom. Here you will see a
 “webservice” key. It is the value that you must edit to point to the
 web services location on the internal web server (through the
 firewall). You may need to get your firewall expert to help you figure
 this one out. In most cases, you will simply need to change {ip} to the
 ip address of the internal web server (as seen from the DMZ).

 Save and exit. Rename the Web.config.external.txt file to Web.config
 (make sure you are viewing file extensions, because it won’t work if
 the file still has a .txt extension!)

 6

 Now we need to fire up IIS Manager on the external web server.
 Browse into Application Pools, and right-click and choose Add
 Application Pool. Create a new pool named “MpoweredApps” using
 .NET CLR Version v4.0.30319 (if you do not have this version, you will
 need to install MS .NET Framework 4.7.2 on this machine), Integrated,
 Start application pool immediately ON. Click on the newly created
 pool, and browse to Advanced Settings on the right side menu. Make
 sure that Enable 32-Bit Applications is set to True, and click OK.

 Now on the left tree, browse down to Sites > Default Web Site >
 Mpowered and right-click on DocuFlow-80000. Choose Convert to
 Application. Keep the Alias as DocuFlow-80000, but select Application
 pool MpoweredApps, and click OK. This should change the icon in the

 tree to: (you may have to refresh to see the icon).

 On the Internal server (in the WAF scenario), or the External server (in
 the DMZ scenario), we are going to additionally create a “generic”
 alias that will point to this version, and can point to new versions (as
 they are released in the future) so that any references to URLs will not
 need to be changed in order to run the most-recent version of the
 application. This is handy when creating the DocuSign Connect
 call-back later as we will not need to change it as updates to
 DocuFlow are made.

 In IIS, right-click on the Mpowered node, and choose “Add
 Application…”. Name the Alias “DocuFlow” (or “DocuFlowTest” for a
 Test version), set the Application pool to “MpoweredApps”, and under
 Physical path use the […] button to browse to the
 …\wwwroot\Mpowered\DocuFlow-80000 directory used above. You
 should now see a node like this:

 DocuFlow
 under the Mpowered node (you may have to refresh to see it).

 As you upgrade in the future, and after you have tested the new
 version using the DocuFlow-nnnnn application, you can edit this
 DocuFlow alias to point to the new version’s physical path (click on
 the DocuFlow alias > Advanced Settings > Physical Path). Edit the alias
 once you are ready to “release” the new version and existing URLs
 such as the DocuSign Connect call-back will seamlessly be
 transitioned to the new version..

 7

 The Web.config files

 The Web.config file on the internal server contains the configuration
 settings for managing the Tempest impersonated userId as well as
 mail and DocuSign settings.

 The bulk of the changes needed will be in the internal Web.config.
 This file is documented with comments, and can guide you if you are
 going to DIY the install. Mpowered is always available for consultation,
 as this file can be tricky to understand and get right. The Web.config
 lets you configure a production and test setting for DocuSign. This is
 helpful, because you should always set up and test any changes to the
 Web.config in the TEST system. Once you are ready to set up LIVE, you
 can simply copy the Web.config file, and change the connectionString
 setting to point to the LIVE system. Once you have set up the LIVE
 Web.config, it is a good idea to copy it back to the TEST system, and
 change the TEST system’s connectionString back to point to the TEST
 database.

 The most important advice here is to ALWAYS have a Test
 environment for DocuFlow, and test any changes to the Web.config in
 Test first. Because DocuFlow operates behind the scenes, there are no
 error messages or other information shown, and so if you are running
 into issues - the debugglobal setting can be set to Y, and a z-debug.txt
 file will be created in the root web service directory as each web
 service is called. You will need to give ‘Users’ write permission into
 the directory. Another piece of standard advice: make a backup copy
 of the working Web.config file before you start making changes!

 Once you are 100% sure that the Test site is working as expected,
 then promote the Web.config to Live. Note that as soon as you put a
 new Web.config in place, IIS will begin to use it immediately, and if
 there are issues or errors in the file, users will get those immediately
 as well – which obviously is undesirable.

 8

 AE_EmailTest operations

 There is a helpful Web.config checker for your internal web services
 AE_EmailTest. You can access these operations while on the Internal
 web server’s IIS Manager, right-clicking on DocuFlow-80000, and
 choosing Manage Application > Browse.

 AE_EmailTest will check that an email can be sent to the email
 address defined in app setting app-000.090. It is really important to
 make sure that emails are going through on the Live system! The most
 common issue with not receiving emails is that the Internal server
 does not have a firewall opening to the server/port defined in the
 Web.config.

 9

 The DOCUFLOW user in Tempest

 The Internal Web.config setting app-000.020 (usually DOCUFLOW)
 defines the Tempest user the DocuFlow app will user-stamp records
 for all of its Tempest database operations as well as for assigning
 Tempest security, and it requires a certain amount of setup to ensure
 it has access. 1. Create a Tempest Resource with the name matching
 setting app-000.020 (usually DOCUFLOW). 2. The DOCUFLOW user
 does not need to be Database Authenticated or anything else on line
 2.

 On the Workgroups tab, add the Workgroup(s) that the DOCUFLOW
 user will be a member of. This will depend on the task type(s) that you
 choose (or create) to handle the to/from DocuSign process, so you
 may not know this yet, but you will need to come back to this once
 the task type is chosen or created (discussed in a following section).

 10

 The Contact Details tab should have at least an EMAIL set up for the
 DOCUFLOW user. This will usually be a technical resource in your
 organization:

 Optionally, the Roles tab will contain the Role for the DOCUFLOW
 user, in this case a newly-created DOCUFLOW role to hold the
 DOCUFLOW user:

 11

 Security Nodes for DocuFlow

 As mentioned previously, you can optionally create a Role for the
 DOCUFLOW user to reside in, or you can give the security directly to
 the DOCUFLOW resource.

 In the example below, the DOCUFLOW role (containing only the
 DOCUFLOW resource) has been granted View and Maintain security
 for the PLUMBING PERMIT folder type, on the task DOCUSIGN
 PERMIT.

 You will need to assign this security for any folders/tasks that are set
 up to do the DocuSign process with DocuFlow, otherwise the call-back
 messages (“Connect” messages) will fail because DocuFlow requires
 View/Maintain security on any task it will be updating with the
 associated call-back actions.

 When setting up new folders/tasks for the DocuSign process, it is
 important to remember to add this security, otherwise tasks will not
 have their statuses automatically updated by DocuFlow. As soon as
 DocuFlow sees this situation, an email will be sent to the technical
 contact defined in the Internal Web.config setting app-000.90 so that
 it can be corrected in Prospero configuration to allow future Connect
 messages to proceed for this task type. Unfortunately, if a Connect
 message is “lost” in this way (due to insufficient security), it cannot be
 re-sent, and the task status may need to be set manually. The security
 should be added as soon as possible, so that the “Completed” status
 can download the signed document from DocuSign and add it to the
 Prospero folder attachments.

 12

 Folder task configuration

 Below we have set up a task named DOCUSIGN PERMIT on our
 PLUMBING PERMIT folder type:

 It’s a good idea to create a new task for the DocuSign process,
 because you usually want to use Statuses and Functions dedicated to
 the DocuSign process. Here are the 6 statuses we have added:

 The NA status is a long-time standard Tempest recommendation to
 have a task status that allows us to indicate that we intentionally did
 not want to use the DocuSign process for a particular folder.

 13

 Before explaining what the other 5 statuses (COMPLETED, FAILED,
 IN-PROGRESS, PENDING and REJECTED) will be used for, let’s take a
 step back and look at the big picture of the document signing
 interaction between Tempest, DocuFlow and DocuSign in this process.

 DocuSign uses a container, for all documents to be signed, called an
 “Envelope”. In our example, we will be sending an Envelope to
 DocuSign containing one Tempest-generated permit to be signed. The
 permit sent for signature is always the most-recent permit generated
 using the Details button on the Folder. Once generated, the permit is
 stored under the Archives node of the folder. Again, there can be
 multiple versions here as the permit details can be changed, but
 DocuFlow will always only use the most-recently generated permit.

 At the start of the process, a Tempest user will set a folder’s
 DOCUSIGN PERMIT task to a chosen status, e.g. IN-PROGRESS which
 triggers the action to send various pieces of information about the
 folder and task to DocuFlow. DocuFlow takes that information and
 creates a new Envelope in the format needed by DocuSign, bundles in
 the archived permit and sends the Envelope to DocuSign to securely
 manage the signing process. DocuSign sends the Envelope to the
 defined email recipient (typically the APPLICANT contact email
 address) and sets its internal Envelope status to “Sent”. As soon as
 DocuSign has sent the Envelope to the recipient for signing, DocuSign
 will send a “Connect” message to DocuFlow with the “Sent” status.
 DocuFlow will then update the Tempest task status and perform any
 status-related functions. In our example, the “Sent” status updates
 the task status from IN-PROGRESS to PENDING.

 So now the recipient gets an email from DocuSign on behalf of the
 sender (you, the City) inviting them to review and sign the document.
 The recipient can either: sign the document which changes the
 Envelope status to “Completed” and downloads the signed document
 as a folder attachment; or decline signing the document (maybe they
 thought something was wrong on the document and want you to
 modify it) which changes the Envelope status to “Declined”; or not
 ever sign the document (maybe they forgot about it?) which changes
 the Envelope status to “Expired”. In any case, DocuSign will send back
 the document’s new DocuSign status to DocuFlow when it happens
 via a Connect message. For these statuses, “Completed” makes sense
 to set the task status to COMPLETED, “Declined” to REJECTED, and
 “Expired” to FAILED. We can set up the status mapping in any way we
 want, but Mpowered recommends this DocuSign-to-task-status
 mapping.

 Because the Tempest task status is kept up-to-date by DocuSign
 Connect messages, IntelliSearch queries can be used to determine

 14

 which folders can move on in the permit process (COMPLETED status),
 or determine which folders may need some additional followup
 (REJECTED and FAILED statuses.)

 Now, let’s take a look at some example functions tied to the
 DOCUSIGN PERMIT task statuses:

 1. At the start of the process, when the DOCUSIGN PERMIT task on
 this folder type is set to IN-PROGRESS, Prospero does a Validation to
 ensure the permit is in the right state to begin the DocuSign process
 (i.e. has at least one archived permit, and an APPLICANT name and
 email), and then runs a SQL Function named DOCUSIGN PERMIT -
 which starts the Envelope creation/sending process as described
 above.

 [The DOCUSIGN PERMIT and DOCUSIGN CHECKS (ERROR) Function
 Items are In-House, and Mpowered will work with you to create yours
 on your Tempest system once you have purchased DocuFlow.]

 2. When DocuSign sends back the Connect message with the “sent”
 status, DocuFlow will use the status mapping to see the “Sent”
 DocuSign status and update the task status to PENDING. When that
 happens, we may want to send out an email as is shown with the
 sample TASK STATUS email template. Emails can be triggered by any
 task status update.

 3. When DocuFlow gets the “Completed” status Connect message
 from DocuSign, DocuFlow sets the task status to COMPLETED, and
 sets the folder Issued Date, based on the SQL Function ISSUED DATE
 (SET OR RESET) Function Item we configured.

 15

 The envelope template file

 When you first implement DocuFlow with Mpowered, you will receive
 an in-house DOCUSIGN PERMIT task function. Mpowered will work
 with you to customize this function. One of the things required in the
 task function is the location of an envelope template file.

 The install directory \Integrations\DocuSign contains a sample
 envelope template (env_templ_building_permit.json.txt) that can be
 used as a starting point. Here is a part of that file:

 The envelope template has various places for replacements, for
 example @@@emailSubject@@@ which DocuFlow will replace with
 the actual email subject desired. The file is in JSON format, and based
 on specifications found on the DocuSign website, but if you are not
 comfortable with making changes in the file, it is probably best to
 consult Mpowered to see if the change you want to make is possible,
 and whether it will do what you intend.

 A good strategy is to copy the supplied sample, and use it to start
 with, and if it looks like you want to make changes, contact
 Mpowered. Your envelope template file should be stored outside of
 any folder structure that IIS serves for best security, for example
 c:\DocuFlowAssets

 16

 For your TEST system, start by creating a DocuSign developer
 account to test the process

 The steps needed to create a DocuSign developer account are beyond
 the scope of this document, but they are well-documented on
 DocuSign’s website and elsewhere. It is recommended to create a
 generic “City” account for this purpose, not an account in a specific
 user’s name. Once you have your developer account created (don’t
 create a Trial account!, create a developer account), there are a few
 more steps to set up your account:

 1. On DocuSign, in your developer account, Apps and Keys :
 2. Create a new application named DocuFlow
 3. Service Integration : Generate RSA, and copy the secret key

 generated to a file on your Internal web server (Mpowered will
 assist you to get this right). (Technical note: the RSA key is
 used by DocuFlow to generate a JWT, which is sent to
 DocuSign as part of the Envelope, and ensures that requests
 sent by DocuFlow on your behalf are authorized and secure.
 The private key file containing the RSA secret key should be
 stored outside of any folder structure that IIS serves for best
 security, for example c:\DocuFlowAssets)

 4. Redirect URIs : set to http://localhost
 5. Authorize all Tempest users to impersonate the DocuFlow app

 on DocuSign by browsing to the Authorization URL below
 (substituting your app’s Integration Key from your
 newly-created application for
 55b160e9-xxxx-xxxx-xxxx-f2f5412725dd). You will need the
 password for the account created above in order to authorize
 the impersonations. You will get a 404 error, but this is normal.

 Authorization URL :
 https://account-d.docusign.com/oauth/auth?response_type=code&sc
 ope=signature
 impersonation&client_id=55b160e9-xxxx-xxxx-xxxx-f2f5412725dd&re
 direct_uri=http://localhost

 Mpowered will assist you every step of the way with all of the above
 steps.

 17

http://localhost/

 Before going Live

 DocuSign ensures that requests and callbacks for any application
 defined in an account pass at least 20 successful runs. Once you have
 completed this, the DocuSign application (“DocuFlow” usually) can be
 set to a status that requests Go-Live verification by DocuSign.
 DocuSign verifies that the requests and callbacks meet their
 requirements, and sets the application to Review passed as shown on
 this development application details screen:

 Of course, you will need a production account on DocuSign, and this
 process is something that you will negotiate with DocuSign. When
 your Live account is ready, please contact Mpowered to get the Live
 system configured and operational.

 18

